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The spatial distribution of the mean velocity in a two-dimensional turbulent wall jet 
was measured for a variety of nozzle Reynolds numbers. It was determined that the 
bulk of the flow is self-similar and it depends on the momentum flux at the nozzle and 
on the viscosity and density of the fluid. The width of the nozzle which was 
commonly used to reduce these data has no part in the similarity considerations as 
has already been suggested by Narasimha et al. (1973). This type of self-similarity 
can be easily applied to determine the skin friction, which can otherwise only be 
determined with considerable difficulty. It was also shown that the ‘law of the wall’ 
applies only to the viscous sublayer. The Reynolds stress in the inviscid, inner 
portion of the flow is not constant thus the assumption of a ‘constant stress layer’ 
is not applicable. The applicability and universality of the ‘outer scaling law’ (i.e. 
Coles’ law of the wake) has been verified throughout the inviscid inner portion of the 
wall jet. The logarithmic velocity distribution cannot be derived by making the usual 
assumptions based on the constancy of the Reynolds stresses or on the thinness of the 
logarithmic region relative to the thickness of the inner layer. 

1. Introduction 
Wall jets are mathematically described by the boundary-layer equations and are 

formally regarded as boundary-layer flows to which momentum was added upstream 
of the region of interest. Thus, the velocity somewhere in the boundary layer exceeds 
the velocity in the free stream. Wall jets are used in many diverse flow systems. For 
example, the flow over the external cowl of a fan-jet engine is a wall jet, as are the 
flows over an extended slotted flap of an airfoil and flow over the interior of an 
automobile wind shield when the defroster (or demister) is activated. Wall jets are 
used to shield turbine blades and other surfaces exposed to either hot or corrosive 
gases. Consequenfly , there are hundreds of reports describing various applications of 
a wall jet in industry. 

A two-dimensional, turbulent and isothermal wall jet, flowing over a flat surface 
in the absence of an external stream is the prototypical configuration whose 
characteristics were investigated in most detail. The first experimental study of this 
flow, carried out by Forthmann (1934)’ was limited to measurements of mean 
velocities in the vicinity of the nozzle. Sigalla (1958), who tried to establish 
experimentally the skin friction in this flow, also measured the mean-velocity profiles 
at  much larger distances from the nozzle than Forthmann. Numerous experimental 
investigations were carried out during the 1960s when the hot-wire anemometer 
came of age and statistical data of many turbulent shear flows were compiled. Most 
of the published data have been critically reviewed by Launder & Rodi (1981, 1983) 
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FIGURE 1. A schematic diagram of the apparatus. 

and will not be repeated here ; there are however a few endemic problems associated 
with this flow which should in our opinion be discussed. 

For example, the rate of spread of the wall jet and decay of its maximum velocity 
in the direction of streaming appear to be dependent on the Reynolds number 
(Tailland & Mathieu 1967). Since such a dependence was not observed in a free jet 
at comparable Reynolds numbers one cannot help but wonder as to its origin. It is 
convenient to attribute this dependence to the presence of the solid surface but the 
latter contributes very little to the total momentum loss. I n  fact Narasimha, 
Narayan & Parthasarathy (1973) suggested that the traditional scaling of the 
relevant distances in the wall jet by the characteristic dimension of the nozzle might 
be erroneous. They proposed scaling the streamwise evolution of the flow by the 
momentum flux and the viscosity of the fluid, but their suggestions seems to have 
been ignored. Launder & Rodi (1981) discarded the novel scaling because many of 
the data sets used by Narasimha et al. were considered to  have poor two- 
dimensionality. 

Another vexing problem plaguing this flow stems from the difficulties encountered 
in measuring the wall shear stress. Some inconsistencies reported in the literature are 
attributed to  the lack of two-dimensionality, to the thinness of the inner layer and 
to poor experimental techniques. Many devices commonly used to determine skin 
friction in turbulent boundary layers rely on the universality of the ‘law of the wall’, 
yet this universality has been repeatedly questioned in the case of the wall jet. A wide 
variety of log-law constants are quoted by some investigators (e.g. R. P. Pate1 1962 ; 
Tailland & Mathieu 1967) while others (e.g. Ozarapoglu 1973 ; Irwin 1973) observe 
the universal constants for similar flow conditions. This controversy has practical 
implications since the number of engineering tools used to estimate surface friction 
would be greatly reduced if the universal law does not apply to the wall jet. 

The universality of outer scaling analogous to ‘the law of the wake’ (Coles 1956) 
was never tested in the wall jet, perhaps because of the original name. Coles (1956, 
p. 196), however, viewed the universality of the law of the wake as a manifestation 
of the large-scale mixing process which is constrained by inertia rather than by 
viscosity. Wherever such flow is bounded by a wall, it  is further constrained by the 
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no-slip condition a t  the solid surface. The inner and outer scaling laws should thus 
overlap in some region of the flow. The inner portion of the turbulent wall jet fulfils 
the same physical criteria in spite of the fact that the total momentum in the outer 
flow is finite. 

The present investigation of the wall jet was undertaken in order to assess the 
relevance of the solid surface to the evolution of the large coherent structures in 
otherwise inviscidly unstable flow. From this point of view the wall jet resembles a 
boundary layer in a strong adverse pressure gradient. We intend to subject the wall 
jet to external excitation and to observe its response. Before doing so however, the 
scaling laws governing the basic flow have to be identified and understood. The 
purpose of the present report is to focus on the unresolved and controversial issues 
in the unforced case. 

The experiments were carried out in air, on the simplest wall jet configuration in 
the absence of an external stream or surface curvature. The flow was incompressible 
and the Reynolds numbers based on the efflux velocity and on the nozzle dimension 
ranged between 3 x lo3 and 3 x lo4. The variation in Reynolds numbers was achieved 
by changing the nozzle dimension as well as the efflux velocity. 

2. Description of the experimental apparatus 
A schematic diagram of the wall jet facility is shown in figure 1. The wall jet 

originated from a two-dimensional nozzle of an adjustable width not exceeding 
10 mm and a span of 600 mm. The air flow for the jet was supplied by a centrifugal 
blower manufactured by North American Co. equipped with a Toshiba [model VF 
pack Pl] speed controller which provided a very stable source of air. Filters were 
mounted at the inlet to the blower to protect the hot wires used to measure the 
velocity. A flexible hose connected the outlet of the blower to a diffuser and a settling 
chamber. The diffuser was equipped with a perforated plate and the settling chamber 
with an array of 4 screens in order to distribute the flow evenly and to reduce the 
turbulence level at the nozzle exit. The contraction ratio of the nozzle was variable 
as it depended on the preselected dimension of the slot. The nozzle was made from 
two eccentric circular arcs. The lower part of the nozzle was made from a solid, 
circular cylinder in which two notches were milled: one provided an anchor for the 
flat surface which constituted the wall of the wall jet while the other supported a thin 
metal membrane connecting the nozzle to the settling chamber. This cylinder was 
supported by screws pushing against a central shaft which protruded through a 
groove in the sidewalls of the apparatus. The width of the nozzle was altered by 
adjusting these screws and later levelling the 125 em long flat plate a t  the 
downstream end of the facility. 

The upper lip of the nozzle was fairly sharp and it had to be reinforced by a thicker 
plate equipped with adjustable screw jacks. The plate was located sufficiently far 
upstream of the lip so that it did not interfere with the entrained flow which was 
attached to the outer surface of the upper lip. The jet emerged from the nozzle with 
a top-hat velocity profile, with the exception of two thin boundary layers, one near 
the outer lip of the nozzle and one near the wall. The two-dimensionality of the jet 
was tested by traversing a small and flat total-impact tube across 90% of the span 
of the apparatus. Initial traverses were made a t  a constant distance, Y ,  from the 
surface of the wall at a streamwise distance of 10 slot widths downstream of the 
nozzle. The screw jacks in the reinforcing plate were adjusted during these traverses 
until the flow appeared to  be two-dimensional. The uniformity of the slot width was 
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FIQURE 2. A test of the two-dimensionality of the flow, at X / b  = 20. (a) b = 2.54 mm, 
U, = 30 m/s, ( b )  b = 7.62 mm, U, = 15 m/s. 

continuously monitored during these adjustments. The final test of the two- 
dimensionality of the flow was made by traversing the wall jet at 3 to 4 spanwise 
locations, 20 slot widths downstream of the nozzle (figure 2). 

The streamwise component of the velocity was measured in the self-similar region 
of the wall jet starting some 20 slot widths downstream of the nozzle. Most of the 
measurements extended beyond 100 slot widths from the nozzle where the maximum 
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velocity in the wall jet dropped to approximately one quarter of its initial value. The 
Reynolds number a t  the nozzle was altered by changing the efflux velocity, Uj, 
between 10 and 50 m/s and/or by changing the width of the slot, b, between 2.5 and 
7.5 mm. The range of Reynolds numbers considered was: 3 x lo3 < Rej < 3 x lo4, 
where Rej E U, blv. 

The streamwise component of velocity was measured with a single, boundary- 
layer-type, hot-wire sensor manufactured by Dantec (model 55P15) with a multi- 
channel anemometer manufactured by AA Lab Systems. The wire was calibrated at 
the nozzle exit for the range of velocities anticipated at  the traverse location. The 
entire calibration procedure was done under computer control using a Baratron 
(model 170M) pressure transducer as reference. A fourth-order polynomial expression 
was used in order to linearize the hot-wire signal. The traverse mechanism was 
manual in the X- and Z-coordinates but it was driven under computer control by a 
stepper motor in the Y-coordinate. The velocity near the solid surface was measured 
at  AY intervals of 0.01 mm. 

Hot-wire data were acquired and analysed digitally. The hot-wire signal was 
conditioned by passing it through a buck-and-gain amplifier and a filter, both of 
which constituted an integral part of the AA Electronics anemometer unit. It was 
then digitized with a 12 bit resolution on a Masscomp computer. 

3. Results 
3.1. Mean velocity and thickness 

Two out of six measured sets of normalized mean velocity profiles are plotted in 
figure 3. These two sets were chosen because the difference between them was the 
largest observed. Each set represents a superposition of eight individual profiles 
measured at  distances ranging from 30 to 140 slot widths from the nozzle for a given 
nozzle Reynolds number Rej. The velocity at  each X-location was divided by its local 
maximum velocity Urn. The differences observed between the two sets of data may 
be attributed to the effect of ReJ. The nozzle Reynolds number might therefore have 
a slight effect on the dimensionless velocity profile a t  the outer part of the jet (i.e. a t  
Y/Ym/2 > 1.3 where Yml2 is the distance measured from the wall to the location at 
which the mean velocity decreases to of its local maximum value in the outer part 
of the flow). However, the data taken in this region are not very reliable because of 
the possible presence of room draughts which may affect the measurements as well 
as the entrained flow. In  fact, most of the previous measurements taken in the 
absence of an external stream terminate at Y/Yrn,, = 1.6 and there is a fair amount 
of scatter reported in the literature for Y/Yrn,, > 1.3. The velocity profile measured 
at  Rej = 19000 agrees very well with the velocity profile measured by Tailland & 
Mathieu (1967) at comparable Rej. The latter is also plotted on figure 3 for visual 
comparison. One may conclude that the mean velocity distribution in the wall jet is 
self-similar and almost independent of Reynolds number, when it is normalized by 
the local length and velocity scales. 

The decay of the maximum velocity in the jet with increasing distance from the 
nozzle is plotted in figure 4. Traditionally, the ratio of (U,/Urn)2 is plotted us. X / b  in 
order to accentuate the decay of the velocity scale which is expected to vary 
approximately as l/X+. In this plot the streamwise distance is measured from a 
virtual origin X, by requiring that the lines fitted through the data converge to 
Urn/Uj = 1 at X = X,. (There is a somewhat irregular tendency of the virtual origin 
to move upstream with increasing ReJ. A notable shift in this origin occurred around 
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FIGURE 3. Normalized mean velocity profiles at Re, = 10000 and 19000 (see table 1 for 

symbols), and compared to data from Tailland & Mathieu (1967) at Re, = 18000. 

Rej = 5000 whereupon turbulence was first noticed near the solid surface in the plane 
of the nozzle. Near the upper lip of the nozzle the flow is oscillatory as a result of the 
Kelvin-Helmholtz instability so typical of a free mixing layer. The interaction 
between the flow oscillations near the wall and near the outer lip of the nozzle might 
be responsible for the complex dependence of X, on Re,.) Straight lines represent the 
results plotted in figure 4 fairly well, but a power-law expression of the form 

x-x, It [3=47] 
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FIQURE 4. The decay of the maximum velocity in the jet as a function of downstream distance 
(or various Re, values (see table 1 ) .  

Symbol 

0 
IXI 

0 
0 

4, A 

X 

0 , O  

u, (m/s) b (m) 
57 5 
30 7.5 
30 5 
15 7.5 
15 5 
30 2.5 
10 5 

Re, 
19000 
15000 
loo00 

7 500 
5000 
5000 
3 700 

TABLE 1.  Symbols used in figures 

fits the data better when the exponent n is approximately - 0.47. The corresponding 
exponent for the rate of spread of Ym,z with X is close to 0.88, in substantial 
agreement with the results of Narasimha et al. (1973), who suggested that this 
exponent should be 0.91. Nevertheless, Launder & Rodi (1981, 1983) preferred a 
linear relationship to describe the rate of spread of the flow and proposed the 
following relationship : 

!%@ = 0.073 f 0.002. (2) dx 

The effect of Reynolds number on the decay of the maximum velocity and the rate 
of spread of the jet in the present investigation is significant. In  fact the slope of the 
lines drawn in figure 4 changes by a factor of 2 in the range of Rej considered. 
Narasimha et al. (1973) suggested that the fully developed wall jet should attain a 
local equilibrium independent of the detailed conditions at the nozzle. The sole 
parameter determining the evolution of an incompressible wall jet surrounded by an 
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identical fluid should therefore be the initial, kinematic momentum flux, J .  This is 
conceptually identical to the scaling laws proposed for jets by Newman (1961) and 
for small-deficit wakes by Sreenivasan & Narasimha (1982). (Unfortunately the 
streamwise evolution of wakes is not entirely dependent on the drag of the body, or 
the momentum deficit in the flow as the previous authors had anticipated, because 
of a persistent dependence of the flow on the nature of the initial instability. 
Nevertheless, scaling the wakes by the momentum thickness is much more relevant 
than scaling by the typical body dimension (e.g. a diameter of a cylinder) which was 
traditionally used for this purpose.) Using Narasimha's suggestion one gets 

where E = [XJ /v2 ] ,  J = [ U f  b ] ,  p and v are the density and kinematic viscosity of the 
fluid respectively, 7, is the shear stress at  the wall and X is measured from the nozzle. 

The velocity and the length scales plotted in this fashion prove the validity of 
Narasimha's assumptions and indicate that the flow is indeed independent of Re, 
provided that the latter exceeds a threshold value of 5000 (figure 5a). The various 
values of Re, shown in figure 5 were obtained by changing the slot width between 2.5 
and 7.5 mm, or by changing the velocity between 10 and 57 m/s. The solid lines 
drawn through the high-Re, data can be expressed analytically by the following 
power laws: 

where A, = 1.473; n = -0.472; and A ,  = 1.445; m = 0.881. 
Even for Rej < 5000 the exponent representing the decay of the velocity scale or 

the rate of growth of the length scale with remains unaltered, only the constant 
coefficient changes. The exponents suggested above compare quite favourably with 
the exponents recommended by Narasimha et al. (m = 0.91, n = -0.506) in spite of 
the fact that Narasimha established his proposed fit on the basis of data acquired at 
much larger E and Re,. The constants A ,  and A, recommended by Narasimha are 
different but there is sufficient scatter in the original data collected in that article to 
account for the difference. 

One may recast these data by accounting for the virtual origin as defined earlier 
(figure 5b) and completely eliminate the dependence of the length and velocity scales 
on Re, : 

where A ,  = 0.557; n = -0.428; and A, = 9.246; m = 0.804. The determination of 
the constants A, and A, is strongly dependent on the choice of the respective 
exponents n and m. Both plots are shown in figure 5 because they will be used in 
calculating 7, and determining the consistency of the data. 

3.2. Turbulent Jluctuations 
The cross-stream distribution of the streamwise component of the turbulent 
intensity does not even scale with Ym12 and Urn for the data acquired at  a single Rej 
let alone for a variety of Reynolds numbers. The data plotted in figure 6 were 
acquired at  Rej = 5 x lo4 and 19 x lo4 at distances ranging from 60 to 120 slot widths 
downstream of the nozzle where the mean velocity profiles appear to be self-similar. 
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FIGURE 6. The distribution of u'/Um across the jet. For symbols see table 1. 

One might always argue that a distance of 100 slot widths is insufficient to attain 
similarity and to such an argument we cannot reply. It may be pointed out however, 
that in a free jet, self-similarity of all three components of the turbulent intensity is 
attained a t  much shorter distances from the nozzle. We therefore suspect that there 
exists a genuine lack of equilibrium caused by the viscous friction with the wall. The 
dependence of u'/Urn on X (where u' is the r.m.s. velocity) a t  the outer part of this 
flow (i.e. a t  Y % Y, which is generally assumed to behave like a free jet) implies that 
the wall inhibits the evolution of the large eddies well beyond the location a t  which 
U = Urn. The largest deviations from self-similarity are visible near the solid surface 
where the production of turbulent energy is highest, and no benefit was derived by 
replotting the data in wall coordinates (after establishing the friction velocity). 

The lack of similarity exhibited by u'/Urn prompted us to re-examine the velocity 
distribution in the vicinity of the wall by replotting the data on a larger scale in figure 
7 for two values of Rej. It appears that the normalized velocity profile near the 
surface is weakly dependent on Re, (regardless of any shift in the virtual origin) 
particularly when the latter is lower than 5000. The self-similarity near the wall is 
thus limited to the variation of the velocity profile with X a t  a prescribed Rej. 
Although the deviation from similarity is small enough to not be observed in figure 
3, it is large enough to  indicate that the inner portion of the wall jet might not be self- 
similar because of the presence of the wall. 
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FIGURE 7. The normalized mean velocity profile near the surface. For symbols see table 1 

It is observed that the maximum velocity in the jet occurs at Y/Ym12 x 0.15 which 
agrees very well with most of the results reported in the literature (see Launder & 
Rodi 1981, table 1). Since previous data were accumulated over a large range of 
Reynolds numbers and flow conditions - the results of Guitton & Newman (1977) on 
curved surfaces, and of Irwin (1973), in the simultaneous presence of a free stream 
and pressure gradient may also be included in this correlation -we may surmize that 
the ratio Ym/Ym12 is insensitive to the details of the flow. Consequently one may 
consider YmlZ as the primary length by which the turbulent portion of the wall jet (i.e. 
the fraction of the flow which is dominated by Reynolds stresses) might be scaled. 
The separate tabulation of the external width of the flow measured from the location 
of the maximum velocity Ym12-Ym (e.g. Tailland & Mathieu 1967) seems to be 
superfluous. 

3.3. Wall shear-stress 
The determination of wall shear stress in this flow is very difficult because of the 
thinness of the inner boundary layer which extends from the surface to the location 
a t  which the jet velocity has a local maximum (i.e. where Y < Ym). Since the wall 
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FIQURE 8. The decay of the jet momentum with downstream distance. Three methods are 
compared : 0,  estimates from wall shear ; 0, Preston tube measurements ; 4, the use of integral 
momentum equation. 

friction has little or no influence on the spreading of the flow, attempts to correlate 
the wall stress with the depreciation of the momentum integral in the direction of 
streaming were not very successful (e.g. Schwarz & Cosart 1961). The skin friction in 
previous experiments was either measured directly by using a small, floating drag 
balance or indirectly by calibrated surface heat-transfer devices or impact probes like 
the Stanton or Preston tubes (Launder & Rodi 1981 ; Ozarapoglu 1973). Since these 
devices are usually calibrated in channel flows they depend on the universality of the 
velocity profile and cannot extend in Y beyond the range in which the universal 
velocity distribution associated with the law of the wall applies. 

The mean velocity gradient in the viscous sublayer, which has to be constant near 
the surface, can also be used to estimate the skin friction. This method, which was 
first used in the wall jet by Tailland & Mathieu (1967), was criticized by Launder & 
Rodi (1981) as being inaccurate because the estimates of C, based on this technique 
'have produced values ranging from 20% to 35% below the consensus values of 
impact tube data'.  In the present experiment the shear stress a t  the wall was 
estimated by use of the momentum integral method, the mean velocity gradient in 
the viscous sublayer, and by use of a Preston tube. The latter method was only used 
in those cases where it was established (by using the first two methods) that the mean 
velocity profile expressed in the law-of-the-wall coordinates complies with the 
constants used for calibrating the tube. 

The depreciation of the jet momentum in the direction of streaming for Rej = 5000 
is plotted in figure 8. The data were normalized by the jet momentum measured at 
X / b  = 30. The frictional losses estimated from [dU/dY], were checked against the 
losses estimated from the momentum integral equation a t  X / b  = 30 and 90. There is 
reasonably good agreement between the two methods. An independent check was 
provided by using a calibrated Preston tube based on the design of V. C. Patel (1965) 
for Re, = 5000, since here the universal constants of the law of the wall based on the 
friction velocity, U, = ( ~ , / p ) i  measured by the other techniques were actually 
realized (i.e. U/U,  = 5.5 log (YUJv)  + 5.5). The diameter of the Preston tube used in 
this experiment was 0.89 mm, corresponding to 14 < U , d / v  < 28. one may therefore 
apply V. C. Patel's calibration curve (Patel 1965, p. 192). The result of these 
measurements confirmed that the momentum loss was estimated correctly by the 
other indirect means, thus justifying their use. 
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FIGURE 9. The dependence of C, on the local Reynolds number (Re,) and a comparison of the 
present results with those of Tailland & Mathieu (1967). 

A plot of the dimensionless skin friction coefficient 

versus the local Reynolds number (Urn Yrn/v) is given in figure 9 and compared with 
the results of Tailland & Mathieu. The agreement between these two sets of data is 
good. Since the present results are entirely self-consistent, they cast some doubt on 
most of the impact-tube data reported in the literature which yield a much higher 
value of Cf. 

We have decided that the most reliable method for measuring the wall stress is to 
use the slope of the mean velocity profile near the surface. We realized that the 
reliability of this method depends on the quality of the traversing mechanism used 
(a resolution of 0.01 mm might be required), the quality and size of the hot-wire 
probe and the number of data points taken to establish the slope correctly. 
Furthermore, heat loss from the wire to the surface may change the apparent slope 
of the velocity profile measured very close to the wall (Wills 1962), consequently such 
change in slope served as an indication for stopping the traverse. The data used for 
assessing the wall friction were taken at elevations exceeding 50 wire diameters 
above the surface and Reynolds numbers based on the wire diameter in excess of 0.7. 
The linear fit to the data extended in some cases to 100 wire diameters and Reynolds 
numbers of 1.5. For this range of variables the heat loss to the wall is not significant 
even in laminar flow, and less significant in turbulent flow (where the corrections 
suggested by Wills are approximately halved). 

A plot of (7,/~)(v/J)~ versus i$ is presented in figure 10(a) where all the data 
obtained through the use of the adopted method are plotted in the general similarity 
coordinates. Once again the skin friction scales correctly with i$ and is independent 
of Rej. The best fit to the data is given by 

where A ,  = 0.146 and 
A cross-check on A, 

self-similar, giving 

k = - 1 . 0 7 .  
and k can be obtained by assuming that the mean velocity is 

/om U2 dY = K U ~  Ym,2, 
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from the nozzle, (a) the downstream distance is measured from the virtual original. For symbols 
see table 1. 

where K = /om[gTd($) = 0.74. 

Then by using the momentum integral equation in conjunction with (4), 

d "  d 5 = - dx I0 U 2  dY = - K - [ U k  Ym,2]. 
P dx 

The exponent k is given by 

k = 2n+m-1 = 2(-0.472)+0.881-1 = -1.063, 

and the constant coefficient is 

A,  = -~(2n+m)A%A, = 0.146. 

One may also calculate k and A ,  from the data plotted in figure 5 ( b )  which account 
for the virtual origin of the jet. In  this case k = - 1.052 and A,  = 0.11 which 
compares with the measured values of k = - 1.056 and A,  = 0.084 obtained from 
figure lo@). 

The agreement between the measured shear stress a t  the wall and the calculated 
shear stress on the basis of flow similarity is good and thus may provide an 
alternative indirect method for estimating wall friction in a two-dimensional wall jet. 
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0 
1 300 

Y Url v 
FIQURE 11.  The velocity distribution near the wall plotted in wall coordinates. For symbols see 

table 1.  

3.4. The wall layer 
A semi-logarithmic plot of the mean velocity distribution in the wall region is shown 
in figure 11 for approximate Rej values of 5000, 10000 and 19000. It is clear that the 
velocity profile near the surface is not universally represented in wall coordinates, as 
it is in the turbulent boundary layer. A logarithmic profile might be fitted to the data 
between 30 < U, Y/v < 130 for Rej = 5000 and between 30 < U, Y/v < 300 for the 
highest Reynolds number. One may even fit a universal slope of 5.5 to all the curves 
shown in figure 11, but the intercept of the measured values of U/U,  at U, Y/v = 1 
varies from approximately 5.5 to 9.5. The additive constant obtained in this way is 
consistent with the observations of Myers, Scahuer & Eustis (1963), Bradshaw & Gee 
(1962) and R. P. Pate1 (1962). However, all the& authors also question the 
universality of the constant A in the equation U/U,  = A log (U, Y/v) + B and they 
propose constants varying from 3.9 to 4.75. Ozarapoglu (1973) attributes the 
variation in both constants to corrections which should have been applied to the data 
acquired by both impact tubes and hot-wire probes. Since such corrections cannot be 
easily applied, because they require knowledge of v’ fluctuation level very close to the 
wall, we checked the consistency of our results by resorting to the ‘outer’ scaling laws 
which are Reynolds-number independent at least in the range of Rej considered. 

We have shown (figure 7) that the normalized velocity profile measured at  Y < Y, 
is dependent on Rej. Taking a cue from observations made in a turbulent boundary 
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FIGURE 12. The velocity distribution near the wall plotted in outer coordinates. An enlargement 
of part of (a) is shown in (b). For symbols see table 1. 
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FIGURE 13. The velocity distribution near the wall plotted in outer coordinates and assuming 
the universality of the slope in the wall coordinates. For symbols see table 1. 

layer (e.g. Coles & Hirst 1968), we shall assume that the flow might be universally 
self-similar were it expressed as 

(7)  

If this correlation is allowed to extend to Y = Y, and f (U, Y/v) = A log (U, Y/v) + B  
then 

where A is the ‘universal constant ’ of the inner scaling law while B is eliminated. The 
reader should recall that the ratio Y,/Ymlz is a constant and therefore the two 
lengthscales can be easily interchanged. A plot of U -  U,/U, us. Y/Y,,, is shown in 
figure 12 for values of Y/Ym12 < 0.32 and the results show a remarkable independence 
of Rej even when the scale of the abscissa is greatly increased by limiting the 
experimental data shown to U,Y/v  > 30 (i.e. to the region where the logarithmic 
velocity distribution applies). We elected to plot the data shown in figure 12 up to 
Y/Y,,, = 0.32 in order to show that the outer scaling law applies well beyond the 
location at which U = U,  and certainly well beyond the location at which Reynolds 
stress vanishes, which occurs much closer to the solid surface. 

Subtracting 5.5 log [Y/Y,] from the previous results and replotting them in figure 
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FIGURE 14. The applicability of the general similarity to the wall region. For symbols see 
table 1 .  

13 shows some deterioration in the similarity profile, suggesting that the constant A 
has some scatter around the nominal value of 5.5. The constant B may be calculated 
from every data point in the range of 30 < U, Y /u  < 130 by subtracting from (8) the 
quantity {Alog(U,Y/u)-[U,/U,]). 

One may also invoke the similarity considerations by using (4) and (5) to get 

The function @ is plotted in figure 14 for three sets of data in which Rej varied 
between 7500 and 19000. All the results collapse onto a single curve as expected from 
consistency considerations. One may use this result to  calculate B again. 

The dependence of B on t can be determined from the relation: 

because the variables Urn, Y, and U, are all functions of E. 
The calculated values of B were not constant but varied between 4.9 t o  9.2, 

corresponding to 3700 < Rej < 19300. These values agree quite well with the 
intercepts with the ordinate of the straight lines drawn in figure 11.  
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4. Discussion and conclusions 
The central core of a two-dimensional turbulent wall jet in a quiescent fluid is self- 

similar when it is scaled by the kinematic momentum flux at the nozzle and the 
viscosity of the fluid. The flow is independent of Rej provided that the latter exceeds 
a certain threshold level. This scaling is very useful because it provides a convenient 
way to determine skin friction from the streamwise decrease of the momentum flux 
(equation (6)). The skin friction, which can be independently determined from 
the mean velocity gradient near the solid surface r , /p  = v(dU/dY),, may also 
be expressed in terms of the self-similar velocity profile shown in figure 3 (i.e. 
U = Urn f(Y/Ym12) and when substituted into the momentum integral equation yields 

d vurn I -K-[U;Y,,z] = -f (0). 
dx Ym/z 

The significance of the proper scaling becomes evident when the dependence of Urn 
and YmIZ on X is substituted into (11).  By choosing the conventional scaling 

(Urnluj) = Au(X/bIn (Ym,z/b) = A,(X/b)m 

used in the literature one obtains 

f’(0) cc Rej(X/b)2m+n-1. (12) 

f ’ (0 )  cc ([)zm+n-l. (13) 

Choosing the scaling given in (3) gives 

It is implausible that the skin friction far downstream of the nozzle will depend on 
Rej, which can only influence the character of the flow within the nozzle and its 
vicinity. One may also observe from the momentum integral ‘equation, that either 
scaling may be applied to the free jet. It is clear from figure 7 that the normalized 
velocity gradient near the wall is not self-similar, regardless of the type of scaling 
applied to Urn or YmlZ. A complete self-similarity in a semi-bounded flow like the wall 
jet or a boundary layer cannot be anticipated because of the different scaling laws for 
the inner and the outer region. Nevertheless, the very weak dependence on X of the 
normalized velocity distribution near the surface may be attributed to the exponent 
of [ (or of X / b )  calculated above. This exponent is 0.18 when one accounts for the 
virtual origin of the flow. 

The inner region of the wall jet between the solid surface and the location at which 
the velocity attains its local maximum may be scaled in an analogous fashion to a 
turbulent boundary layer. The ‘defect law ’ which relates the difference between the 
local velocity and the velocity maximum (U-Urn) to U,, Y and Y, is valid 
throughout most of the region with the exception of the viscous sublayer. 
Dimensional considerations yield the following : 

where Ym12 was used to replace Y, since it is a constant multiple of Y,. 
On the other hand, in order to derive the logarithmic velocity distribution in the 

wall region it is sufficient to assume either : (i) that the total shear stress is constant 
and equivalent to the stress at the wall and (ii) that the changes in the local mean 
velocity are independent of viscosity ; or by using the ‘defect law ’ that changes in the 
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FIQIJRE 15. A comparison of the total and the viscous stress distributions near the surface 
plotted in wall coordinates. 

local mean velocity occur so far from Y, that they are independent of this dimension. 
All of these arguments were used to prove that an overlap exists between the region 
governed by the law of the wall and the region scaled by the outer law. 

We computed the stress distribution by integrating the momentum equation from 
the wall outward, requiring the entire stress to be viscous at the wall. The results of 
these computations are plotted in figure 15 for Re, x 5000 and 19000. The viscous 
stress vanishes at U, Y/u > 30 as anticipated from data accumulated in turbulent 
boundary layers. However, the total stress is not constant at U, Y / u  > 30. In fact for 
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Rej x 5000 the total stress starts decreasing at YUJv > 8 while for the higher Rej 
it does so at  > 30. The shear stress vanishes at  the lower Reynolds number at 
U, Y/v x 60 and at  the higher Rej at x 120. Since the assumed existence of an 
inviscid constant stress layer did not materialize, one of the important assumptions 
used in deriving the logarithmic velocity distribution for the wall jet did not apply 
in the present case. 

On the other hand, the derivation of the logarithmic velocity profile from the 
defect-law relation requires that the distance from Y, to the logarithmic region will 
be much larger than the width of the logarithmic region itself. This assumption does 
not fit the present conditions either, since the distance from Y, to the region where 
the logarithmic profile occurs is only 50 wall units at Rej = 5000 and increases to 
approximately 100 wall units at the higher Reynolds numbers (figure 11). This is in 
sharp contrast to channel, pipe and boundary-layer flows, where the nominal 
thickness of the logarithmic region is an order of magnitude smaller than the 
thickness of the boundary layer or the radius of the pipe. The velocity defect law and 
the law of the wall may still apply to a wall jet provided that the Reynolds number 
is an order of magnitude higher than used in this experiment. One may possibly 
derive the logarithmic velocity distribution on the basis of other assumptions or 
models (e.g. Prandtl's mixing-length model) but their validity will have to be tested. 
Thus the equilibrium, to which we were so accustomed in the boundary layer, may 
not apply to the wall jet because the distance at which U =  Urn is so close to the 
surface that the importance of the inertia terms increases as rapidly with Y as the 
viscous term diminishes. 

The intrusion of the outer scaling to the viscous sublayer might be associated with 
a rapid mixing process which takes place across the region where the velocity in the 
wall jet is maximum. Since this mixing process cannot stop at Y = Y,, one may 
expect that the outer scaling law, as expressed in equation (a), will also apply at 
larger distances from the wall ; and in fact the outer scaling may be applied up to 
Y/Y, x 4 (or Y/Y,,, x 0.6). This implies that there is a large region of overlap 
between the bulk parameters Urn and Y,,, which scale the core of the wall jet and the 
' outer ' (boundary-layer type) scaling laws. Consequently the restraining effects of 
the surface are felt far beyond Y = Y, in spite of the fact that the viscous effects are 
limited to U, Y/v < 30. 

The work was supported in part by a grant from AFOSR (contract number 
AFOSR-88-0176) and monitored by Dr J. McMichael. The authors also wish to thank 
Professor B. G. Newman for his help and advice and Professor D. Coles for his 
remarks. 

REFERENCES 

BRADSHAW, P. & GEE, M. Y. 1960 Turbulent wall jets with and without an external stream. Aero. 

COLES, D. 1956 The law of the wake in a turbulent boundary layer. J. Fluid Mech. 1, 191. 
COLES, D. E. & HIRST, E. A. 1968 AFOSR-IFP Stanford Conf. on Computation of Turbulent 

FORTHMANN, E. 1934 Uber turbulente Strahlausbreitung. Ing. Arch. 5 ,  42. 
GUITTON, D. E. & NEWMAN, B. G. 1977 Self-preserving turbulent wall jets over convex surfaces. 

IRW, H. P. A. H. 1973 Measurements in a self-preserving plane wall jet in a positive pressure 

Res. Coun. R & M 3252. 

Baundary-Layers, Thermosciences Division, Stanford University. 

J .  Fluid Mech. 81, 155. 

gradient. J. Fluid Mech. 61, 33. 



690 I .  Wygnunski, Y .  Katz and E. Horev. 

LAUNDER, B. E. & RODI, W. 1981 The turbulent wall jets. Prog. Aerospace Sci. 19, 81. 
LAUNDER, B. E. & RODI, W. 1983 The turbulent wall jet - measurements and modeling. Ann. Rev. 

Fluid Mech. 15, 429. 
MYERS, G. E., SCAHUER, J. J .  & EUSTIS, R. H. 1963 Plane turbulent wall jet flow development 

and friction factor. Trans. ASME J : J. Basic Engng 85, 47. 
NARASIMHA, R.,  NARAYAN, K. Y. C PARTHASARATHY, S. P. 1973 Parametric analysis of turbulent 

wall jets in still air. Aeronaut. J. 77, 335. 
NEWMAN, B. G. 1961 The deflexion of plane jets by adjacent boundaries - Coanda effect. In 

Boundary Layer and Flow Control. Pergamon. 
OZARAPOQLU, V. 1973 Measurements in incompressible turbulent flows. D.Sc. thesis, Lava1 

University, Quebec City. 
PATEL, R. P. 1962 Self preserving two dimensional turbulent jets and wall jets in a moving stream. 

M.Sc. thesis, McGill University, Montreal. 
PATEL, V. C. 1965 Calibration of the Preston tube and limitations on its use in pressure gradients. 

J. Fluid Mech. 23, 185. 
SCHWARZ, W. H. C COSART, W. P. 1961 The two-dimensional turbulent wall-jet. J. Fluid Mech. 

10, 481. 
SIOALLA, A. 1958 Measurements of a skin friction in a plane turbulent wall jet. J. R. Aero. SOC. 

62, 873. 
SREENIVASAN, K. R. & NARASIMHA, R. 1982 Equilibrium parameters for two-dimensional 

turbulent wakes. Trans. ASME I: J .  Fluids Engng 104, 167. 
TAILLAND, A. C MATHIEU, J. 1967 Je t  parietal. J .  MLc. 6, 1. 
WILLS, J. A. B. 1962 The correction of hot-wire readings for proximity to a solid boundary. 

J .  Fluid Mech. 12, 388. 


